Journal of Orthopedic and Spine Trauma

Published by: Kowsar

The Effects of Geometrical Parameters of the Pedicle Screw on Its Pullout Strength: In-Vitro Animal Tests

Sheida Vafadar 1 and Gholamreza Rouhi 2 , *
Authors Information
1 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Article information
  • Journal of Orthopedic and Spine Trauma: December 2017, 3 (4); e74189
  • Published Online: September 25, 2017
  • Article Type: Research Article
  • Received: July 15, 2017
  • Revised: August 9, 2017
  • Accepted: September 10, 2017
  • DOI: 10.5812/jost.74189

To Cite: Vafadar S, Rouhi G. The Effects of Geometrical Parameters of the Pedicle Screw on Its Pullout Strength: In-Vitro Animal Tests, J Orthop Spine Trauma. 2017 ; 3(4):e74189. doi: 10.5812/jost.74189.

Copyright © 2017, Journal of Orthopedic and Spine Trauma. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018;70:196-203. doi: 10.1016/j.jbiomech.2017.10.009. [PubMed: 29126607].
  • 2. Krishnan V, Varghese V, Kumar GS. Comparative Analysis of Effect of Density, Insertion Angle and Reinsertion on Pull-Out Strength of Single and Two Pedicle Screw Constructs Using Synthetic Bone Model. Asian Spine J. 2016;10(3):414-21. doi: 10.4184/asj.2016.10.3.414. [PubMed: 27340518]. [PubMed Central: PMC4917757].
  • 3. Mehta H, Santos E, Ledonio C, Sembrano J, Ellingson A, Pare P, et al. Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model. Clin Biomech (Bristol, Avon). 2012;27(3):234-40. doi: 10.1016/j.clinbiomech.2011.10.004. [PubMed: 22071427].
  • 4. Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. Spine J. 2012;12(2):164-8. doi: 10.1016/j.spinee.2012.01.014. [PubMed: 22336467].
  • 5. Akbarian D, Rouhi G, Mashhadi M, Herzog W. Biomechanics of cervical spine following implantation of a semi-constrained artificial disc with upward center of rotation: A finite element investigation. J Mech Med Biol. 2015;15(4):1550063. doi: 10.1142/s0219519415500633.
  • 6. Kamal Z, Rouhi G. A parametric investigation of the effects of cervical disc prostheses with upward and downward nuclei on spine biomechanics. J Mech Med Biol. 2016;16(7):1650092. doi: 10.1142/s0219519416500925.
  • 7. Varghese V, Saravana Kumar G, Krishnan V. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys. 2017;40:28-38. doi: 10.1016/j.medengphy.2016.11.012. [PubMed: 27939099].
  • 8. Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength on human spine. J Biomech. 2004;37(4):479-85. doi: 10.1016/j.jbiomech.2003.09.005. [PubMed: 14996559].
  • 9. Patel PS, Shepherd DE, Hukins DW. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys. 2010;32(8):822-8. doi: 10.1016/j.medengphy.2010.05.005. [PubMed: 20558097].
  • 10. Lill CA, Schlegel U, Wahl D, Schneider E. Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180 degrees. J Spinal Disord. 2000;13(3):259-66. doi: 10.1097/00002517-200006000-00011. [PubMed: 10872766].
  • 11. Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J. 2001;1(6):408-14. doi: 10.1016/S1529-9430(01)00119-X. [PubMed: 14588297].
  • 12. Tsai WC, Chen PQ, Lu TW, Wu SS, Shih KS, Lin SC. Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone. BMC Musculoskelet Disord. 2009;10:44. doi: 10.1186/1471-2474-10-44. [PubMed: 19402917]. [PubMed Central: PMC2694760].
  • 13. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118(3):391-8. doi: 10.1115/1.2796022. [PubMed: 8872262].
  • 14. Wang H, Wang H, Sribastav SS, Ye F, Liang C, Li Z, et al. Comparison of pullout strength of the thoracic pedicle screw between intrapedicular and extrapedicular technique: a meta-analysis and literature review. Int J Clin Exp Med. 2015;8(12):22237-45. [PubMed: 26885199]. [PubMed Central: PMC4729985].
  • 15. Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res. 2005;23(4):788-94. doi: 10.1016/j.orthres.2004.11.002. [PubMed: 16022991].
  • 16. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Abe Y, Asazuma T, et al. Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir (Wien). 2016;158(3):465-71. doi: 10.1007/s00701-016-2705-8. [PubMed: 26769471].
  • 17. Varghese V, Kumar GS, Venkatesh K. A finite element analysis based sensitivity studies on pull out strength of pedicle screw in synthetic osteoporotic bone models. Biomedical Engineering and Sciences (IECBES), 2016 IEEE EMBS Conference. IEEE; 2016. p. 382-37.
  • 18. Chao CK, Hsu CC, Wang JL, Lin J. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. J Spinal Disord Tech. 2008;21(2):130-8. doi: 10.1097/BSD.0b013e318073cc4b. [PubMed: 18391719].
  • 19. Fakhouri SF, Zamarioli A, Wichr CRG, Araujo CA, Defino HLA, Shimano AC. Biomechanical study of the pullout resistance in screws of a vertebral fixation system. Adv Mech Eng. 2015;3:701263. doi: 10.1155/2011/701263.
  • 20. Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys. 2010;32(2):145-54. doi: 10.1016/j.medengphy.2009.11.003. [PubMed: 19945333].
  • 21. Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord. 1998;11(3):215-20. doi: 10.1097/00002517-199806000-00007. [PubMed: 9657546].
  • 22. Sterba W, Kim DG, Fyhrie DP, Yeni YN, Vaidya R. Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech (Bristol, Avon). 2007;22(4):385-91. doi: 10.1016/j.clinbiomech.2006.11.007. [PubMed: 17208340]. [PubMed Central: PMC1924916].
  • 23. Amirouche F, Solitro GF, Magnan BP. Stability and Spine Pedicle Screws Fixation Strength-A Comparative Study of Bone Density and Insertion Angle. Spine Deform. 2016;4(4):261-7. doi: 10.1016/j.jspd.2015.12.008. [PubMed: 27927514].
  • 24. Standard A. F543-07 ε1: standard specification and test methods for metallic medical bone screws. West Conshohocken, PA, USA: ASTM International; 2007.
  • 25. Allen R, Baldini N, Donofrio P, Gutman E, Keefe E, Kramer J. Standard test method for determining axial pull-out strength of medical screws (F1691-96). Annual Book of ASTM Standards medical devices and services. 13. 1997.
  • 26. Winn HR. Osteoporotic fractures: Evaluation and treatment with vertebroplasty and kyphoplasty. In: Crowley RW, Yeoh HK, Mckisic MS, Oskouian RJ, Dumont AS, editors. Youmans Neurological surgery. Philadelphia: W. B. Saunders Co; 2011. p. 3255-67.
  • 27. Rouhi G, Tahani M, Haghighi B, Herzog W. Prediction of stress shielding around orthopedic screws: Time-dependent bone remodeling analysis using finite element approach. J Med Biol Eng. 2015;35(4):545-54. doi: 10.1007/s40846-015-0066-z.
  • 28. Haase K, Rouhi G. Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli. Comput Biol Med. 2013;43(11):1748-57. doi: 10.1016/j.compbiomed.2013.07.032. [PubMed: 24209921].
  • 29. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;(203):99-112. [PubMed: 3956001].
  • 30. Chazistergos P, Ferentinos G, Magnissalis E, Kourkoulis S. Investigation of the Behaviour of the Pedicle Screw-Vertebral Bone Complex, When Subjected to Pure Pull-Out Loads. 2006 International ANSYS Conference Proceedings Pittsburgh. USA. ANSYS Inc; 2006.
  • 31. Coe JD, Warden KE, Herzig MA, McAfee PC. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976). 1990;15(9):902-7. [PubMed: 2259978].
  • 32. Halvorson TL, Kelley LA, Thomas KA, Whitecloud T3, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976). 1994;19(21):2415-20. [PubMed: 7846594].
  • 33. Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res. 2004;22(6):1237-42. doi: 10.1016/j.orthres.2004.04.001. [PubMed: 15475203].
  • 34. Cook SD, Salkeld SL, Whitecloud T3, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord. 2000;13(3):230-6. doi: 10.1097/00002517-200006000-00006. [PubMed: 10872761].
  • 35. Sturup J, Nimb L, Kramhoft M, Jensen JS. Effects of polymerization heat and monomers from acrylic cement on canine bone. Acta Orthop Scand. 1994;65(1):20-3. doi: 10.3109/17453679408993711. [PubMed: 8154277].
  • 36. Kuhns CA, Reiter M, Pfeiffer F, Choma TJ. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory. Global Spine J. 2014;4(1):47-54. doi: 10.1055/s-0033-1361588. [PubMed: 24494181]. [PubMed Central: PMC3908976].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments